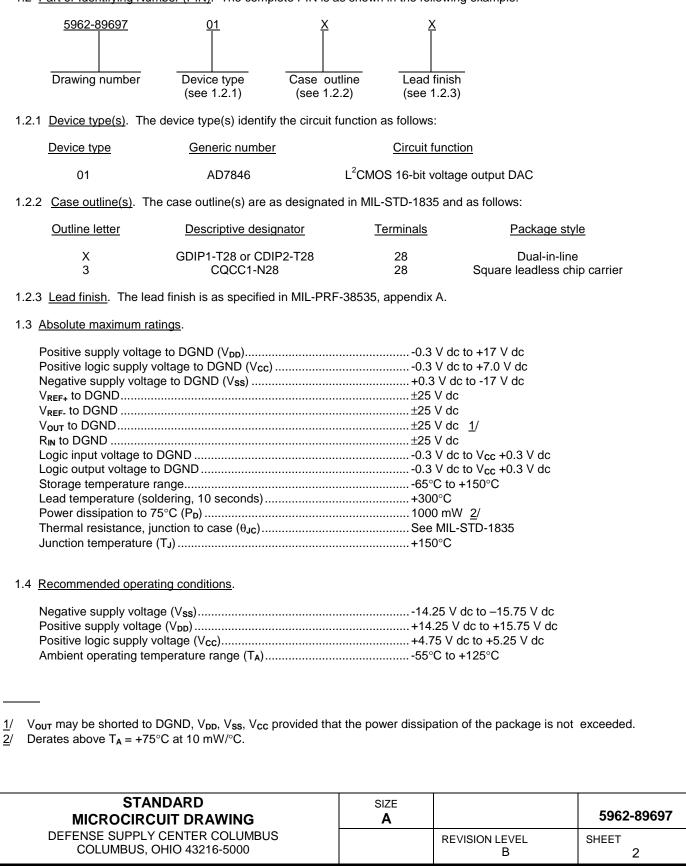
							F	REVISI	ONS										
LTR		DESCRIPTION						DATE (YR-MO-DA)			DA)	APPROVED							
А	Chang	jes in accord	lance wi	th NO	R 5962	-R057-	92.						91-1	1-18		Michael A. Frye			
В	Drawir	ng updated t	o reflect	currer	nt requi	irement	ts Ig	t				01-12-07 Raymond Mo				d Monr	nin		
THE ORIG	INAL F	FIRST SH	EET O	F TH	IIS DF	RAWI	NG H.	AS BI	EEN F	REPLA	łCED	·							
REV																			
SHEET																			
REV																			
SHEET																			
REV STATUS		•	REV			В	В	В	В	В	В	В	В	В	В	В	В	В	В
OF SHEETS			SHE	ET		1	2	3	4	5	6	7	8	9	10	11	12	13	14
PMIC N/A PREPARED BY Rick C. Officer STANDARD MICROCIRCUIT CHECKED BY Charles E. Besore					DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216 http://www.dscc.dla.mil														
DRAWING THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE			APPROVED BY Michael A. Frye DRAWING APPROVAL DATE				MICROCIRCUIT, LINEAR, 16-BIT, VOLTAGE OUTPUT DAC, MONOLITHIC SILICON												
DEPARTMENT OF DEFENSE AMSC N/A			REVIS		03 Apr				SI	ZE	CA	GE CC	DE						
						В				4		67268			5	5962-	8969	7	
									SHE	ET		1	OF	14					


DSCC FORM 2233 APR 97

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

1. SCOPE

1.1 <u>Scope</u>. This drawing describes device requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A.

1.2 Part or Identifying Number (PIN). The complete PIN is as shown in the following example:

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (DoDISS) and supplement thereto, cited in the solicitation.

SPECIFICATION

DEPARTMENT OF DEFENSE

MIL-PRF-38535 -- Integrated Circuits, Manufacturing, General Specification for.

STANDARDS

DEPARTMENT OF DEFENSE

MIL-STD-883 -	Test Method Standard Microcircuits.
MIL-STD-1835 -	Interface Standard Electronic Component Case Outlines.

HANDBOOKS

DEPARTMENT OF DEFENSE

MIL-HDBK-103 -- List of Standard Microcircuit Drawings. MIL-HDBK-780 - Standard Microcircuit Drawings.

(Unless otherwise indicated, copies of the specification, standards, and handbooks are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein. Product built to this drawing that is produced by a Qualified Manufacturer Listing (QML) certified and qualified manufacturer or a manufacturer who has been granted transitional certification to MIL-PRF-38535 may be processed as QML product in accordance with the manufacturers approved program plan and qualifying activity approval in accordance with MIL-PRF-38535. This QML flow as documented in the Quality Management (QM) plan may make modifications to the requirements herein. These modifications shall not affect form, fit, or function of the device. These modifications shall not affect the PIN as described herein. A "Q" or "QML" certification mark in accordance with MIL-PRF-38535 is required to identify when the QML flow option is used.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535, appendix A and herein.

- 3.2.1 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 1.
- 3.2.2 <u>Truth table</u>. The truth table shall be as specified on figure 2.
- 3.2.3 <u>Output voltage ranges</u>. The output voltage ranges shall be as specified on figure 3.
- 3.2.4 Logic diagram. The logic diagram shall be as specified on figure 4.
- 3.2.5 <u>Switching characteristics</u>. The switching characteristics shall be as specified on figure 5.
- 3.2.6 Load circuits. The load circuits shall be as specified on figure 6.
- 3.2.7 <u>Case outlines</u>. The case outlines shall be in accordance with 1.2.2 herein.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89697
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		B	3

3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full ambient operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.

3.5 <u>Marking</u>. Marking shall be in accordance with MIL-PRF-38535, appendix A. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in MIL-HDBK-103 (see 6.6 herein). For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device.

3.5.1 <u>Certification/compliance mark</u>. A compliance indicator "C" shall be marked on all non-JAN devices built in compliance to MIL-PRF-38535, appendix A. The compliance indicator "C" shall be replaced with a "Q" or "QML" certification mark in accordance with MIL-PRF-38535 to identify when the QML flow option is used.

3.6 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-PRF-38535, appendix A and the requirements herein.

3.7 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.

3.8 <u>Notification of change</u>. Notification of change to DSCC-VA shall be required in accordance with MIL-PRF-38535, appendix A.

3.9 <u>Verification and review</u>. DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

4. QUALITY ASSURANCE PROVISIONS

4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.

4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:

- a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
- b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89697
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL B	SHEET 4

Test	Symbol	$\begin{array}{l} Conditions \underline{1}/\\ -55^{\circ}C \leq T_{A} \leq +125^{\circ}\\ \text{unless otherwise spec} \end{array}$)evice type	Lin	nits	Unit
Decelution	RES		1.0	2	04	Min	Max	Dite
Resolution		Lipipolor output 2/	1, 2,		01	16 -16	.10	Bits LSB
Relative accuracy Differential nonlinearity <u>3</u> /	R _A DNL	Unipolar output <u>2</u> /	1, 2,		01	-10	+16 +1	LOD
Gain error 4/		-	1, 2,	3	01	-16	+1	
	A _E		2, 3	2	01	-24	+10	
Offset error	O _E	-	2, 3	,	01	-16	+24	
	ÛE		2, 3	3	01	-24	+24	
Relative accuracy	RA	Bipolar output <u>5</u> /	1, 2,		01	-8	+8	LSB
Differential nonlinearity 3/	DNL		1, 2,		01	-1	+1	
Gain error <u>4</u> /	AE	-	1	-	01	-8	+8	
-	-		2, 3	3		-16	+16	
Offset error <u>4</u> /	OE	1	1		01	-8	+8	
_			2, 3	3		-16	+16	t
Bipolar zero error	BIPe	1	1		01	-8	+8	
			2, 3	}		-16	+16	
Reference input resistance	R _{refin}	Resistance from V _{REF-} V _{REF+}	to 1, 2,	3	01	20	40	kΩ
V _{REF+} range <u>6</u> /	V_{REF+}		1, 2,	3	01	V_{SS}	V_{DD}	V
						+6.0	-6.0	
V _{REF-} range <u>6</u> /	V_{REF}		1, 2,	3	01	V_{SS}	V_{DD}	V
						+6.0	-6.0	
Output swing voltage <u>6</u> /	V_{SWING}		1, 2,	3	01	V _{ss} +4.0	V _{DD} -3.0	V
Input voltage high level	VIH		7,8	3	01	2.4	0.0	V
Input voltage low level	VIL		7, 8	3	01		0.8	V
Digital input current	I _{IN}		1, 2,	3	01		±10	μA
Output voltage high level	Vон	I _{SOURCE} = 400 μA	1, 2,	3	01	4.0		V
Output voltage low level	Vol	I _{SINK} = 1.6 mA	1, 2,	3	01		0.4	V
Floating state leakage current	I _{LKG}	$DB_0-DB_{15}=0 \text{ to } V_{CC}$			01		±10	μA
Positive power supply current	IDD	Vout unloaded 7/	1, 2,	3	01		5.0	mA
Negative power supply current	I _{SS}						5.0	
Positive logic supply current	lcc	1					1.0	t i
Power supply sensitivity 8/	PSS	1					2.0	LSB/V
Floating state output	Cout	See 4.3.1 c	4		01		10	pF
ee footnotes at end of table								
STAN MICROCIRCI	VING	SIZE A				596	2-8969	
DEFENSE SUPPLY	OLUMBUS		REVISIO			SHEET		

Test	Symbol	$\begin{array}{l} Conditions \underline{1}/\\ -55^\circ C \leq T_{\textbf{A}} \leq +125^\circ C\\ unless \ otherwise \ specified \end{array}$		Group A subgroups	Device type	Limits		Unit
						Min	Max	
Digital input capacitance	CIN	See 4.3.1 c		4	01		10	pF
Functional test		See 4.3.1 d		7, 8	01			
R/\overline{W} to \overline{CS} setup time	t1	See figure 5	<u>9</u> /	9	01	40		ns
				10, 11		50		
CS pulse width (write cycle)	t ₂			9	01	150		
				10, 11		190		
R/\overline{W} to \overline{CS} hold time	t3			9	01	40		
				10, 11		50		
Data setup time	t4			9	01	110		
				10, 11		120		
Data hold time	t ₅			9, 10, 11	01	0		
Data access time <u>10</u> /	t ₆			9	01		230	
				10, 11			320	
Bus relinquish <u>11</u> /	t7			9	01	10	80	
				10, 11		10	90	
CLR setup time	t ₈			9, 10, 11	01	20		
CLR pulse width	t9			9, 10, 11	01	150		
CLR hold time	t10	1		9, 10, 11	01	0		
LDAC pulse width	t ₁₁	1		9	01	80		
				10, 11		100		
CS pulse width (read cycle)	t ₁₂			9	01	240		
				10, 11		330		

TABLE I. <u>Electrical performance characteristics</u> – Continued.

- $\begin{array}{ll} \underline{1} & \mbox{Unless otherwise specified, } 14.25 \ \mbox{V} \ dc \leq \ \mbox{V}_{\mbox{DD}} \leq 15.75 \ \mbox{V} \ dc, \ -14.25 \ \mbox{V} \ dc \leq \ \mbox{V}_{\mbox{SS}} \leq -15.75 \ \mbox{V} \ dc \ and \ 4.75 \ \mbox{V} \ dc \ \leq \ \mbox{V}_{\mbox{SS}} \leq -15.75 \ \mbox{V} \ dc \ and \ 4.75 \ \mbox{V} \ dc \ \leq \ \mbox{V}_{\mbox{SS}} \leq -15.75 \ \mbox{V} \ dc \ and \ 4.75 \ \mbox{V} \ dc \ \leq \ \mbox{V}_{\mbox{SS}} \leq -15.75 \ \mbox{V} \ dc \ \mbox{dc} \ dc \ \leq \ \mbox{V}_{\mbox{SS}} \leq -15.75 \ \mbox{V} \ dc \ \mbox{dc} \ dc \ \mbox{dc} \ \mbox{dc} \ \mbox{V} \ \mbox{dc} \ \mbox$
- 2/ V_{REF-} = 0 V, V_{OUT} = 0 V to 10 V, 1 LSB = 153 μ V.
- <u>3/</u> Monotonicity is guaranteed over full temperature range.
- $\underline{4}$ Vout load = 10 M Ω .
- 5/ V_{REF} = -5.0 V, V_{OUT} = -10 V to +10 V, 1 LSB = 305 μ V.
- <u>6/</u> If not tested, shall be guaranteed to the limits specified in table I herein.
- $\overline{\underline{7}}$ The device is functional with a power supply of ±12 V.
- $\underline{8}$ Sensitivity of gain error, offset error and bipolar zero error to V_{DD}, V_{SS} variations.
- <u>9</u>/ All input control signals are specified with $t_R = t_F = 5.0$ ns (10 % to 90 % of +5.0 V) and timed from a voltage level of 1.6 V.
- $\frac{10}{10}$ t₆ is measured with the load circuits for access time on figure 6 and defined as the time required for an output to cross 0.8 V or 2.4 V.
- 11/ t₇ is defined as the time required for an output to change 0.5 V when loaded with the circuits for bus relinquish time on figure 6.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89697
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL B	SHEET 6

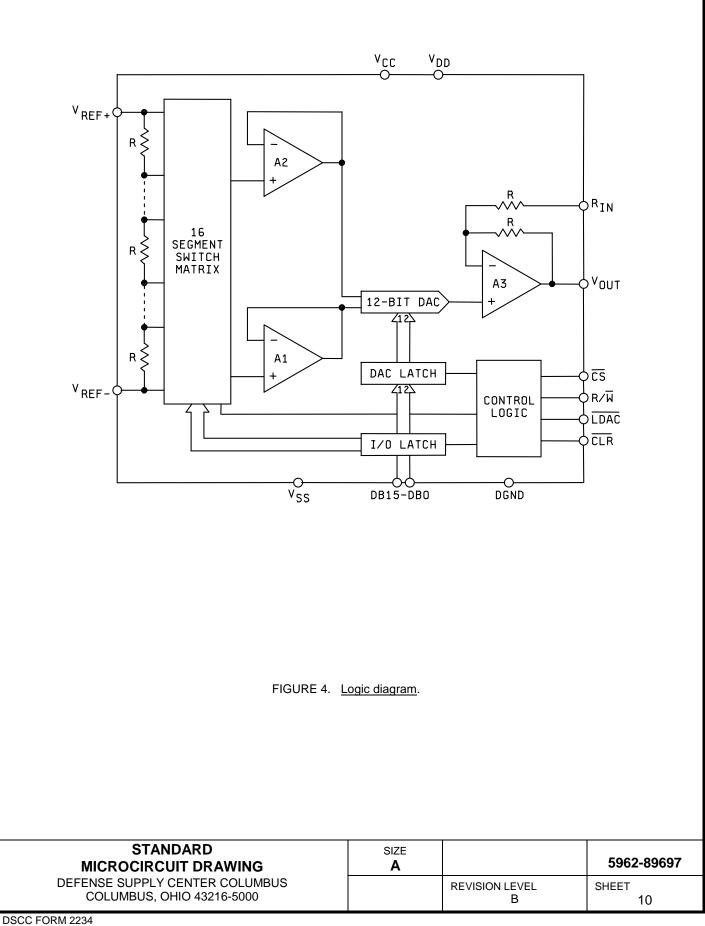
Device type	01			
Case outline	X and 3			
Terminal number	Terminal symbol			
1	DB ₂			
2	DB1			
3	DB₀			
4	V _{DD}			
5	Vout			
6	R _{IN}			
7	V _{REF+}			
8	V _{REF-}			
9	Vss			
10	DB ₁₅			
11	DB ₁₄			
12	DB ₁₃			
13	DB ₁₂			
14	DB ₁₁			
15	DB ₁₀			
16	DB9			
17	DB ₈			
18	DB ₇			
19	DB ₆			
20	DGND			
21	Vcc			
22	R/W			
23	CS			
24	CLR			
25	LDAC			
26	DB₅			
27	DB₄			
28	DB3			

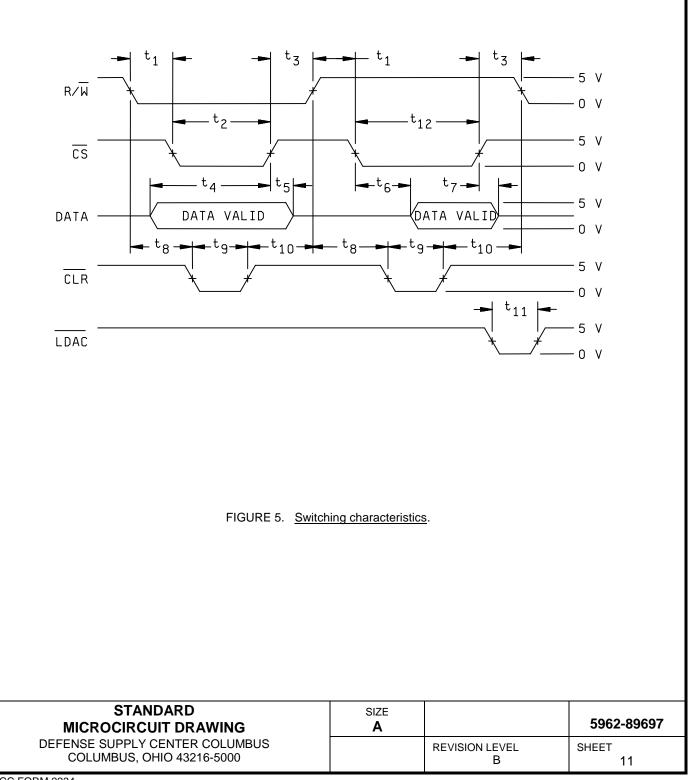
FIGURE 1. Terminal connections.

STANDARD	SIZE		5962-89697
MICROCIRCUIT DRAWING	A		3902-09097
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL B	SHEET 7

CS	R/W	LDAC	CLR	Function
1	Х	Х	Х	3-state DAC I/O latch in high-Z state
0	0	Х	Х	DAC I/O latch loaded with DB ₁₅ –DB ₀
0	1	Х	Х	Contents of DAC I/O latch available on DB15-DB0
Х	Х	0	1	Contents of DAC I/O latch transferred to DAC latch
Х	0	Х	0	DAC latch loaded with 000 000
Х	1	Х	0	DAC latch loaded with 100 000

0 = Low 1 = HighX = Don't care


FIGURE 2. Truth table.


STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89697
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL B	SHEET 8

Output range	Vref+	V _{ref} .	R _{IN}
0 V to +5.0 V	+5.0 V	0 V	V _{out}
0 V to +10 V	+5.0 V	0 V	0 V
+5.0 V to -5.0 V	+5.0 V	–5.0 V	Vout
+5.0 V to -5.0 V	+5.0 V	0 V	+5.0 V
+10 V to -10 V	+5.0 V	–5.0 V	0 V


FIGURE 3. Output voltage ranges.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89697
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL B	SHEET 9

LOAD CIRCUITS FOR ACCESS TIME (T₆)

LOAD CIRCUITS FOR BUS RELINQUISH TIME (T7)

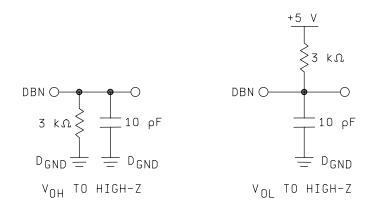


FIGURE 6. Load circuits.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-89697
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL B	SHEET 12

MIL-STD-883 test requirements	Subgroups
	(in accordance with
	MIL-STD-883, method 5005,
	table I)
Interim electrical parameters	1
(method 5004)	
Final electrical test parameters	1*, 2, 3, 7, 8
(method 5004)	
Group A test requirements	1, 2, 3, 7, 8, 9, 10**, 11**
(method 5005)	
Groups C and D end-point	1
electrical parameters	
(method 5005)	

TABLE II. Electrical test requirements.

* PDA applies to subgroup 1.

** Subgroups 10 and 11, if not tested, shall be

guaranteed to the limits specified in table I herein.

4.3 <u>Quality conformance inspection</u>. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.

4.3.1 Group A inspection.

- a. Tests shall be as specified in table II herein.
- b. Subgroups 5 and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
- c. Subgroup 4 (C_{IN} and C_{OUT} measurements) shall be measured only for the initial test and after process or design changes which may affect input capacitance.
- d. Subgroups 7and 8 shall include verification of the truth table.

4.3.2 Groups C and D inspections.

- a. End-point electrical parameters shall be as specified in table II herein.
- b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

STANDARD	SIZE		
MICROCIRCUIT DRAWING	Α		5962-89697
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL B	SHEET 13

5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-PRF-38535, appendix A.

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractorprepared specification or drawing.

6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.

6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Supply Center Columbus when a system application requires configuration control and the applicable SMD. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0544.

6.5 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43216-5000, or telephone (614) 692-0547.

6.6 Pin description. The pin description is as follows.

Pin	Description
DB ₂ - DB ₀	Data I/O pins. DB₀ is LSB.
V _{DD}	Positive supply for analog circuitry. This is a +15 V nominal.
Vout	DAC output voltage pin.
R _{IN}	Input to summing resistor of DAC output amplifier. This is used to select output voltage ranges. See figure 2.
V _{REF+}	V_{REF+} input. The DAC is specified for $V_{REF+} = +5.0$ V.
V _{REF} .	V_{REF-} input. For unipolar operation connect V_{REF-} to 0 V and for bipolar operation connect it to -5.0 V. The device is specified for both conditions.
V _{ss}	Negative supply for analog circuitry. This is –15 V nominal.
$DB_{15} - DB_6$	Data I/O pins. DB ₁₅ is MSB.
DGND	Ground pin for logic circuitry.
Vcc	Positive supply for logic circuitry. This is +5 V nominal.
R/W	R/\overline{W} input. This can be used to load data to the DAC or to read back the DAC latch contents.
CS	Chip select input. This selects the device.
CLR	Clear input. The DAC can be cleared to 000000 or 100000. See figure 2.
LDAC	Asynchronous load input to DAC.
$DB_5 - DB_3$	Data I/O pins.

6.7 <u>Approved sources of supply</u>. Approved sources of supply are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000

SIZE A		5962-89697
	REVISION LEVEL B	SHEET 14

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 01-12-07

Approved sources of supply for SMD 5962-89697 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535.

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.
- <u>2</u>/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE number Vendor name and address

24355

Analog Devices, Inc. Rt. 1 Industrial Park P.O. Box 9106 Norwood, MA 02062 Point of Contact: Bay F-1 Raheen Ind. Estate Limerick, Ireland

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.